

## Development Platform iW-RainboW-G33D i.MX 8M Q/QL/D SMARC Development Kit



The i.MX 8M Quad/QuadLite/Dual SMARC Development platform combines the NXP's i.MX 8M Quad/QuadLite/Dual application processor based SMARC SOM and iWave's Generic SMARC Carrier Card to offer consumer, medical and industrial embedded computing & multimedia applications. The board is highly packed with all necessary onboard connectors to validate i.MX 8M Quad/QuadLite/Dual SoC features.

**APPLICATIONS:** Digital Media Adaptors, HD Digital signage, Industrial HMI, Building Automation, Imaging & Scanning, Audio/Video Streaming devices, and Machine Vision.

## iW-RainboW-G33D HIGHLIGHTS

i.MX 8M Quad/QuadLite/Dual SoC IEEE 802.11a/b/g/n/ac Wi-Fi & BT 5.0 Dual Gigabit Ethernet 2GB LPDDR4 memory (Expandable) 5.5'' HD AMOLED MIPI DSI Display MIPI CSI Camera USB 3.0 TypeC Connector I2S Audio Codec SMARC V2.0 Standard

## **SPECIFICATIONS**

| i.MX 8M SMARC SOM                                             |
|---------------------------------------------------------------|
| Processor:                                                    |
| i.MX 8M Quad: 4 x Cortex-A53, 1 x Cortex-M4, GPU & VPU Decode |
| i.MX 8M QuadLite: 4 x Cortex-A53, 1 x Cortex-M4,<br>& GPU     |
| i.MX 8M Dual: 2 x Cortex-A53, 1 x Cortex-M4, GPU & VPU Decode |
| LPDDR4 - 2GB (Expandable)                                     |
| eMMC Flash - 8GB (Expandable)                                 |
| QSPI Flash (Optional)                                         |
| Gigabit Ethernet PHY Transceiver x 2                          |
| USB 2.0 High Speed 4-Port Hub                                 |
| IEEE 802.11a/b/g/n/ac Wi-Fi & BT 5.0                          |
| OS Support:                                                   |
| Linux 5.4, Android 9                                          |
| SMARC Carrier Board:                                          |
| Gigabit Ethernet Jack- 2 Port                                 |
| PCIe x1 slot / Mini PCIe slot - 1 Port                        |
| USB 3.0 Host TypeA Connector - 1 Port                         |
| USB 3.0 OTG TypeC Connector – 1 Port                          |
| USB 2.0 Host TypeA Connector - 2 Ports                        |
| Standard SD slot - 1 Port                                     |
| HDMI/DP - 1 Port                                              |
| CAN - 2 Ports                                                 |

| 5.5"HD AMOLED MIPI DSI display                  |
|-------------------------------------------------|
| Capactive Touchscreen                           |
| MIPI CSI Camera Connector                       |
| I2S codec                                       |
| General Purpose I2C-1 Port                      |
| Full Function UART - 1 Port                     |
| RTC with backup battery                         |
| Debug Micro USB Port                            |
| SMARC GPIOs – 12 Nos                            |
| Expansion Connector interfaces:                 |
| QSPI x 1 port                                   |
| SPI x 1 port                                    |
| UART x 1 port                                   |
| I2C x 2 port                                    |
| SAI (8 Tx and 8 Rx channels) x 1 Port(Optional) |
| A&V Expansion Connector interfaces:             |
| MIPI CSI x 1 Port (4 lane)                      |
| SAI/I2S x 1 Port                                |
| I2C x 2 Ports                                   |
| GPIOs                                           |
| Power Input: 12V DC                             |
| <b>Operating Temperature:</b> 0°C to +60°C      |
| Form Factor:                                    |
| 120mmx120mm Naon ITX Size                       |
|                                                 |





## i.MX 8M Q/QL/D SMARC Development Board - Block Diagram

| Bottom                        | 10/100/1000Mbps Etherne             |                                                     | Q/QL/D SMARC Edge<br>Connector          | To On -board<br>Peripherals<br>& SOM | On -Board<br>Regulators    | 12V       | 12V Power Jack                       |
|-------------------------------|-------------------------------------|-----------------------------------------------------|-----------------------------------------|--------------------------------------|----------------------------|-----------|--------------------------------------|
| RJ45 Stack                    | RJ45 Stack 10/100/1000Mbps Ethernet |                                                     | VDD_RTC                                 |                                      | 3V                         |           | RTC Coin cell<br>Holder              |
| Bottom<br>USB3.0 Stack<br>Top | USB3.0 Host x 1                     | SB3.0 Host x 1 USB1                                 | MIPI<br>DSI0/LVDS,<br>I2C4 <sup>6</sup> | MIPI DSI                             | /LVDS X1 (4 lane)          | MIPI DSIO | MIPI DSI0<br>Connector               |
| USB TypeC<br>Connector        | Switch<br>SEL                       | DIP SW                                              | J                                       |                                      |                            | LVDSO     | LVDS Display<br>Connector            |
| Bottom<br>USB2.0 Stack<br>Top |                                     | (HS)<br>JSB2.0 Host x 1 USB2_HUBP1                  | HDMI <sup>1</sup>                       | )                                    | HDMI_TX x 1                |           | HDMI<br>Connector                    |
| Mini PCle                     | USB2.0 1:2 -                        | PCle x 1                                            | DP <sup>1</sup>                         | )                                    | DP x 1                     |           | Display Port<br>Connector            |
|                               | PCle Switch A                       | Cle_SW_SEL PCle1                                    | MIPI CSI0                               | } <mark>⊲ C</mark>                   | SIO lane[1:0]<br>CSIO lane | 3:21 🗲    | MIPI CSI0<br>Connector               |
| M.2 Module<br>Connector       |                                     | QSPI<br>QSPI_B4<br>I2S x 1<br>AUD_SAI3 <sup>2</sup> | QSPI_B4 SDI0 x 1                        |                                      |                            |           | Standard SD<br>Connector             |
|                               |                                     | UART x 1 UART4*                                     | SAIZ                                    | 125                                  | 125                        | Audio In  | Audio In Jack                        |
| PCIe x 4 Slot                 |                                     | PCIe x 1<br>CIe_SW_SEL PCIe2*                       | SAIZ                                    |                                      | Audio Codec                | Audio Out | Audio Out Jack                       |
| Debug micro                   | USB USB to UART                     | UART UART1                                          | UART2                                   |                                      | (with CTS & RTS) x         | 1         | UART Header                          |
| USB Port                      | TXRX                                |                                                     | LVDS1*                                  | )                                    | LVDS1 X 1                  |           | •                                    |
|                               | SPI Flash 🔶                         | ESPI1 <sup>3, 6</sup>                               | MIPI CSI1                               | MIPI CSI X1 (4lane)                  |                            |           | 80 pin<br>A&V                        |
|                               | DIP Switch                          | BOOT_SEL x 3 BOOT_SEL                               | AUD_SAI3 <sup>2</sup>                   | )                                    | I2S x 1<br>I2Cx 2, GPI0s   |           | Expansion<br>Connector -2            |
|                               | CAN                                 |                                                     | GPIOs                                   | -                                    |                            |           |                                      |
| CANO Header 🔫                 | Transceiver<br>CAN                  |                                                     | ESPI1 <sup>3</sup>                      | SPI x 1                              |                            |           | 80 pin<br>Carrier<br>Expansion       |
| CAN1 Header                   | Transceiver                         | FLEXCAN1*                                           | QSPI_B4                                 |                                      | QSPI x 1<br>UART x 1       |           |                                      |
|                               |                                     |                                                     | 12C2,12C3                               | ).<br>}                              | 12C x 1                    |           | Connector -2                         |
|                               |                                     |                                                     |                                         |                                      |                            |           |                                      |
|                               |                                     | 100 pin S0                                          | M Expansion Connector*                  |                                      |                            |           | 80 pin                               |
|                               |                                     |                                                     | MIPI CSI0                               | CSI0 lan                             |                            |           | Carrier<br>Expansion<br>Connector -1 |
| 0                             |                                     |                                                     | SAI1                                    |                                      | SAI x 1                    |           |                                      |

Note: \* Opt

1. Either HDMI or DP can be supported on SOM, in default configuration HDMI is supported.

2. Shared between M.2 Connector and A&V Expansion Connector

- 3. Shared between SPI Flash and Expansion Connector 2 4. Shared between SPI Flash and Expansion Connector 2
- Either MIPL DSI or LVDS can be supported on SOM, in default configuration MIPL DSI is supported.
  Either SPI or CANO can be supported on SOM, in default configuration SPI is supported.

## **OS SUPPORT**

Linux 5.4 Android 9

#### DELIVERABLES

i.MX 8M SMARC Development Kit Hardware User Manuals

#### **OPTIONAL KITS/Modules**

SMARC Heat Sink Camera Module

#### **CUSTOM DEVELOPMENT**

**BSP Development/OS Porting Custom SOM/Carrier Development** Custom Application/GUI Development **Design Review and Support** 

iWave Systems Technologies is an ISO 9001:2015 certified company, head quartered in Bangalore India established in the year 1999. The company focuses on providing embedded solution and services for Industrial, Medical, Automotive and various other Embedded Computing applications. iWave Systems offers wide range of System On Modules and Single Board Computers built using wide range of CPU and FPGA SoC platforms with different form factors such as Qseven, SMARC, SODIMM and HPC by closely working with Tier-1 silicon companies such as NXP, Xilinx, Intel etc.

iWave Systems offers various state of art ready ODM solutions such as Connected Telematic Control Unit / OBD II devices for the automotive edge analytics, Comprehensive ARINC818 solutions for the low latency Aerospace applications and Rugged IP rated performance scalable HMI solutions for Industrial applications.

iWave Systems also provides comprehensive Engineering design services involving Embedded Hardware, FPGA and Software development. iWave offers carrier board and custom hardware development with manufacturing and certification services.iWave's Hardware expertise spans complex board design up to 30 layers; Analog, Digital & RF Designs; FPGA Development up to 3+ million gates and VHDL / Verilog RTL Development & Verification. Our Software expertise ranges from OS Porting, Firmware & Device Drivers Development and Wireless & Protocol Stacks to Embedded Application Development. With the established certified manufacturing eco system partners from Japan and Taiwan, iWave delivers high quality CPU modules, single board computers, custom carrier boards and customised chip on board designs for the global customer requirements.

#### \*Optional items not included in the standard deliverables.

Note: iWave reserves the right to change these specifications without notice as part of iWave's continuous effort to meet the best in breed specification. The registered trademarks are proprietary of their respective owners.

#### INDIA

iWave Systems Technologies Pvt Ltd. #7/B, 29th Main, BTM Layout 2nd Stage. Bangalore - 560 076 mktg@iwavesystems.com

### www.iwavesystems.com

# JAPAN

iWave Japan Inc. 8F Kannai Sumiyoshi Building, 3-29 Sumiyoshi-cho,Naka -ku, Yokohama Kanagawa, Japan mktg@iwavesystems.com

## Ordering the i.MX 8M SMARC Kit

The device can be ordered online from the iWave Website

https://www.iwavesystems.com/product/i-mx-8m-quad-quadlite-dual-smarc-som/

Or from our Local Partners in your region

http://www.iwavesystems.com/about-us/business-partner.html

**EUROPE** International Sales & Marketing Europe Venkelbaan 55 2908KE Capelle aan den lissel. The Netherlands info@iwavesystems.eu

USA iWave USA 1692 Westmont Ave. Campbell Ca95008 LISA info@iwavesystems.us